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Abstmck One promising approach to neural network 
controlled robotics is the use of autoassociative networks. 
These networks learn to move a "sensor and effector" 
vector through a plausible state-space. This approach is, 
however, hindered by the intrinsically inefficient nature of 
autoassociative networks. This paper outlines a novel 
approach that greatly increases the efficiency and 
resolution of associative networks, and has other 
implementation benefits as well. 
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Research Objective 
Recently, there has been enormous interest in 

small insect-like robots. The Department of Defense 
would like to send dozens of "bugbots" to see what is over 
the next hill. NASA would like to drop a fleet of bugbots 
into the atmosphere of Mars. Other agencies would like 
to have bugbots inspect pipes (from the inside), or fly into 
buildings and then crawl from room to room looking for 
inhabitants. 

A very natural and effective approach to neural 
network control of these small robots is the use of 
autoassociative networks to process vectors composed of 
current sensor and effector infanmation. This approach 
has created some remarkably intelligent small robots like 
those developed by Erwin Baumann and David Williams 
of McDonell Douglas Aerospace [ 11 and Dario Flareano 
and Jseba Urzelai at the Swiss Federal Institute of 
Technology in Lausanne [2,3]. 

The use of autoassociative networks in robotics 
is hindered by shortcomings that are intrinsic to 
autoassociative networks themselves. For example, one 
measure of a network's ability to construct meaningful 
search space landscapes is the number of attractors that 
can form clearly delineated basins. The typical 
autoassociative net with N neurons can be expected to 
form only 0.15N clearly delineated basins even though 
there are 2N patterns in the search space. 

Other attributes of autoassociative nets that 
impede their use in robotics are caused by the difficulties 
inherent in training autoassociative networks, not the least 
of which is the need for a CPU and training programs. 
Typical training regimes tend to focus on learning only 
from good examples or only from bad examples when 
robots (like animals) need to learn f?om both. 
Furthermore, the stored program paradigm itself is brittle, 

intrinsically serial, prone to deadlocks, and degrades 
unpredictably [4]. The research described in this paper is 
aimed at freeing autoassociative networks from these 
problems. 

Autoassociative Networks 
Generally speaking, autoassociative networks are 

a set of neurons that are completely connected. Each 
neuron has input from all other neurons, and the output of 
each neuron goes to every other neuron. In m e  
instantiations, neurons also output to themselves. The 
state of a neuron is Completely determined by the dot 
product of its inputs and its weights. Setting the weights 
sets the behavior of the network. 

The neurons of an autoassociative network are 
usually thought of as comprising a row or vector. Time is 
a quantum phenomenon for (most) autoassociative 
networks in the sense that time proceeds in discrete steps 
or moments. At each moment of time, the row of neurons 
forms a pattern: Some neurons are firing, some are not 
firing. Hence the current state of an autoassociative 
network can be described with a single binary vector. As 
times goes by, the network changes this vector. 
Autoassociative networks move vectors over landscaps 
of possibilities. 

If we look at the network from the point of view 
of a single weight we start to see some of the reasons that 
autoassociative networks are so inefficient. Consider a 
network with N neurons, and look at neuron M -- or more 
precisely look at weight W of neuron M. Learning 
consists of moving W to a number that is best for most 
ptkms. At the end of training, all weights are fixed to 
reflect the tyranny of the majority of patterns. All the 
patterns that represent minorities (from a single weight's 
point of view) are ignored. The perfarmance of the 
network would be improved if the fixed weights were 
replaced with something more dynamic. 

Nexus Controlled Robots 
A nexus is a "deeper" [5]  autoassociative 

network. Where you would expect to find a weight in an 
autoassociative network, you find the output of a network 
in a nexus. In an autoassociative network, each neuron is 
connected to all (or most) of the other neurons in the net. 
If there are N neurons in the net, there will be (on the 
order of) N2 connections between neurons. In a nexus, 
the number of weights will be NJ where j>2. 
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At each timestep a neuron is either fving (1) ar 
not firing (0) depending on the current input from a-)ll the 
other neurons. Hence the matrix of weights connecting 
the neurons controls the movement of a vector (neuronal 
firing pattern) through N-space. The topography of 
trajectories through N-space is completely determined by 
the weight matrix. Lmrning consists of modifying the 
values of these weights. 

Here are some of the ways in which a Nexus 
differs from an Autoassociative net: 

1. 

2. 

3. 

4. 

5. 
6. 

A nexus uses synaptic networks [5,71 throughout. 
Autoassociative nets do not. 
A nexus changes only the effector part of a vector. 
Autoassociative nets change all parts of the vector. 
Tap level Autoassociative weights are replaced by 
nets in nexi. 
Nexus weights are binary and can be stored as 
memory bits. Autoassociative weights are numbers 
(stored in registers). 
The only arithmetic operation in a nexus is 'majority). 
A nexus has a simple learning algorithm that uses 
both 'good' and 'bad' examples. Autoassociative nets 
are (usually) trained using only negative examples. 

A Bottom-Up Description of a Nexus 
To see how a nexus works at the lowest level, 

consider a very small nexus that processes vectors of 
eleven elements. At the lowest level, there will be two 
rows of memory locations; each row can hold eleven bits. 
For ease of reference, we will represent the memory 
locations with letters of the alphabet: 

a b c d e f g h i j k (datazerosrow) 
1 m n o p q r s t u v (dataonesrow) 

The vector 00000000000 consults memary locations 

The vector oooO1111100 consults memory locations 
b, cT d, e, f, g, h, i j, and k. 

aAc,d,p,q,r,s,t,j,andk. 

Consultation consists of looking at the specific 
locations and ascertaining if the majority of the locations 
contain the one bit (verses the zero bit). If the majority of 
the bits are ones, the value of the consultation is one, else 
the value of the consultation is zero. 

Learning (from negative examples) consists of 
changing bits when a mistake is made. If it is known that 
the consultation should have given a one and instead gave 
a zero, then one or mote of the constituent bits is changed 
from zero to one. The treatment of false majorities is 
treated in a complementary manner. When the only high 
level feedback is that the judgment was in mot, a random 
set of bits is changed. For additional infannation about 

the fine points of implementing the learning algorithm, 
see the references on synaptic networks [5,7]. 

Learning (from positive examples) is 
accomplished with the addition of two rows of 'creb' bits 
(the name comes from biology). One of these rows is 
associated with the zero data bits and the other is 
associated with the one data bits: 

Z Z Z Z Z Z Z Z Z Z Z (crebzerorow) 
a b c d e f g h i j k  (data zero row) 
l m n o p q r s t u v  (data one row) 
N N N N N N N N N N N  (creb one row) 

When a successful pattern evaluation is 
encountered, the creb bits that correspond to the pattern 
are set to one. Negative results may change the data 
rows, but positive results change only the creb rows. 
When a negative pattern indicates a change in a data bit, 
the corresponding creb bit is checked. If the creb bit is 
zeroT the data bit is changed. If the creb bit is me, the 
creb bit is set to zero and the data is left unchanged. 
Hence, good examples tend to make bits 'sticky) in the 
sense that they resist future changes from bad examples. 
The preceding four rows of memory (two rows of data, 
two rows of creb) form the lowest level or terminal node 
of the nexus. 

The next higher level up the nexus can be 
represented as the following three rows: 

A B C D E F G H I J K (zerosterminalnodes) 
X X X X X X X X X X X (targetvector) 
L M N 0 P Q R S T U V (onestenninalnodes) 

The row of Xs holds the current vector. The 
upper row is a collection of terminal nodes for 
consultation by zero bits in the current vector; the lower 
row is a collection of terminal nodes for consultation by 
one bits in the current vector. 

If the current vector is oooO1llllOOT we have: 

A B C D E F G H I J K (zerosterminalnodes) 

L M N 0 P Q R S T U V (onestenninalnodes) 
0 0 0 0 1 1 1 1 1 0 0  (target vector) 

So to generate the target vector oooO1111100, 
we consult the terminal node A for the leftmost node, the 
terminal node B for the next bit, and continue through C, 
D, P, Q, R, S,  T, J, and K. Each terminal node is 
consulted using oooO11111OO and each terminal node 
produces one bit of the new vector. This deepening 
process can be extended to any number of levels but there 
will be an exponential growth in the number of total bits. 



A Top-Down Description ofa Nexus 
Although we refer to the set of weights that 

controls vector updating in the nexus as a matrix, it is 
always more complex than a single matrix. In the 
simplest possible nexus, vector updating is controlled by 
two matrices: a zero matrix and a ones matrix. In actual 
practice, each element of the zero matrix and each 
element of the ones matrix are (often) replaced by another 
level of synaptic net [5]. Therefore the elements of the 
top-level matrices are not fixed, but computed. This 
process of replacing a weight with a net is how simple 
synaptic networks ‘snap together’ to farm more complex 
networks. From a traditional artificial neural network 
perspective, the weights of an autoassociative net are 
being replaced with perceptrons. 

the terminal node we find bits in memory locations 
instead of numbers in registers as we would expect to find 
at the lowest level of autoassociative nets. The only form 
of arithmetic perfarmed on a set of bits is the ‘majority’ 
function. The majority function returns one if the majority 
of bits in the input set are ones, and the majority function 
returns zero otherwise. These ones and zeros may be 
passed up to higher-level majority functions. Computing 
evaluations as the majority of bits has two practical high 
level ramifications: minimizing memory requirements and 
eliminating the need for a CPU [6]. 

When we descend to the lowest level and reach 

An Example &Nexus Controiled Behavior 
Gait control in hexapod walking robots is an 

excellent application of nexus control. There are three 
basic hexapod gaits (see Figure 1): bi-tripodal (pretty 
stable, pretty fast), side-to-side (unstable, very fast), and 
caterpillar (very stable, quite slow). 

Figure 1 shows the three basic modes of 
locomotion. 

The open circles represent raised feet and the 
filled circles represent feet that are in contact with the 
surface over which the hexapod is moving. These three 
gaits are the results of three different schemas [8]. We 
trained both nexi and ordinary autoassociative networks 
on all three gaits. The standard autoassociative networks 
could be preset to any (but not all) of the gaits. However, 
training the gaits with autoassociative networks proved to 
be very difficult without the use of auxiliary techniques 
such as simulated annealing and reinforcement learning 
-- techniques which introduced unnecessary complexity 
and superfluous hardware. 

Figure 2 shows the errors during learning of all 
three gaits using a different single-layer nexus for each 
gait. Training sessions included (but were not limited to) 
positive feedback for farward progress and negative 
feedback for falling down. 

The training of the three individual one-layer 
nets (Figure 2) started with random leg positions. The 
nexus was trained from whatever position the last move 
left the hexapod in. The three curves shown in Figure 2 
are typical. The training was always successfid no matter 
what the starting position. 

Figure 3 shows the results for one deep nexus 
learning all three gaits, with the three gaits king 
reinstated every 10 steps. The learning time required by 
the deep nexus (Figure 3) was less than the total time 
required by the three single-layer nexi combined, but 
greater than the time required by the worst of the three 
single-layer nexi (Figure 2). This seems reasonable since 
the single-layer nexi were trained in parallel, and the 
deeper nexus required approximately 12 times as many 
weights as the smaller nexi. This finding is consistent 
with the findings in many areas of neural network 
research Many small nets outperhm one large net. [4,6] 

moa om0 mom om0 mom 
0.0 + moo + 000 +mom -b 0.0 

Bi-tripodal Gait - Low energy requirement; Gait most often used 

000 0.0 000 om. 000 
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I I Side-to-side Gait - High energr, Fast escape gait I I 

e m 0  + 00. + 0.0 ~ mao + eo. 
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Caterpillar Gait - Slow but steady; the gait for sticky environments or windy days 

I Figure 1. The three basic hexapod gaits I 



I Figure 2. Each small nexus learning one gait I 

I Figure 3. A deeper nexus learning all three gaits I 
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